
A Brief Study on Defining Templates to Avoid
XSS Vulnerabilities Using Auto Escape Templates

for Web Applications
Ch Rajesh

Asst. Professor, IT

ANITS, Visakhapatnam

K S V K Srikanth

Asst. Professor, IT

ANITS, Visakhapatnam

I S L Sarwani

Asst. Professor, IT

ANITS,Visakhapatnam

G Sankara Rao

Asst. Professor, CSE

GVPCEW, Visakhapatnam

Abstract: Cross-site scripting (XSS) is a type of computer
security vulnerabilities typically found in Web applications.
XSS enables attackers to inject client-side script into web
pages viewed by other users. A cross-site scripting
vulnerability may be used by attackers to bypass access
controls such as the same origin policy (refer Fig:1). Cross-site
scripting carried out on websites accounted for roughly 84%
of all security vulnerabilities documented by Symantecas of
2007 [1]. Their effect may range from a petty nuisance to a
significant security risk, depending on the sensitivity of the
data handled by the vulnerable site and the nature of any
security mitigation implemented by the site's owner.

General Terms:Web Security, Vulnerability, Templates,
Security Attack, Web Application Security, Attacks from
Third Parry Web Sites.

Keywords:XSS, Cross Site Scripting, Auto Escape Templates,
C Templates, Template Parsers.

I. INTRODUCTION:

Avoiding Cross-site scripting (XSS) problems occurred in
web applications with the help of Auto Escape templates to
filter malicious code injected into the web applications by
defining contexts and modifiers with proper parsers [2].
This paper gives you how to define auto escape templates
to avoid XSS in your web applications.

II. XSS ATTACK:

XSS is possible because of internet security weakness of
client-side scripting languages. HTML, Java Script, VB
Script, ActiveX and Flash are prime culprits for this
exploit. Exploited XSS is commonly used to achieve the
following malicious results [3].

 Identity theft

 Accessing sensitive or restricted information

 Gaining free access to otherwise paid for content

 Spying on user’s web browsing habits

 Altering browser functionality

 Public defamation of an individual or corporation

 Web application defacement

 Denial of Service attacks

III. AUTO ESCAPE TEMPLATES:

In the Template System, Auto Escape is an optional mode
of execution evolved to defence cross-site scripting (XSS)
attacks in web applications. In this optional execution mode
the template system takes the responsibility of defining
proper escaping modifiers for each variable in the template.
So, the template developer no need to apply the escaping
modifiers manually to each variable, which is a recursive
and error-prone method mostly for big applications.

A built-in HTML-aware parser helps in determining the
escaping modifiers required to apply on each variable, for
the sake of the Template System during template
initialization. The HTML-aware parser scans the template
to determine the context of each variable such as to emit
the unwanted variable. This scanning process doesn’t
require any processing time as it is done during
initialization-time.

Auto Escape currently supports well HTML and Java script
templates along with proper parsing. It also provides
support a wide range of escaping modifier for other
contexts like (XML, JSON and etc.) but without defining a
parser. Parsers may exist specific to these contexts and
modifiers for those that are fine-grained in the future.

In case of scams related to Phishing, a harmful web page
(fake / malicious web page) is loaded instead of the original
web page which we wants to access, but in cross site
scripting the real web page is loaded with malicious scripts,
it is very tough to identify the attack.

Ch Rajesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4171-4173

www.ijcsit.com 4171

Fig 1 : A High Level View of Cross Site Scripting Attack

IV. SYNTAX RULES TO DEFINE TEMPLATES:
 The HTML-aware parser takes care about filtering
the unwanted variables or code, if we provide perfect
template system.
There are two major parts in C-template System, they are:

 Template
 Dictionary

A Template defines an element on the web page, the
element can be a string, image URL, Script, CSS or etc.,
when the HTML-aware parser finds a template it verifies
the Dictionary for its value. If the template element is
found in the dictionary then it is processed, otherwise the
element will be treated as a malicious code and eliminated.
The syntax to define a template is as follows:
Syntax: {{Template_Element_Name}}
A Dictionary is collection of key value pairs, as we already
familiar, here the key is Template element (dictionary
name), the template element is also called as marker, and
the value is the description (dictionary value) of the
template element or marker.
Expanding is a process which is done by the HTML-aware
parser, in which each template element (marker) is been
substituted with its dictionary value [4].
{“URL” : “./Mydirectory/mypic.jpg”,
“DATE” : “17-07-2015”,
“TITLE” : “My First Template”,
“BODY” : “This is an example of Auto escape template, \n
which depicts how to use template and dictionary” }

For example: See, how the following web page is parsed
by the HTML-aware parse.

<html>
 <head>
 <title>{{TITLE}}</title>
 {{META_TAGS}}
 </head>
 <body>
 {{BODY}}
 <img src=”{{URL}}”
alt=”logo”>
 {{DATE}}
 </body>
</html>

 The output of the above web page would be as
below, once after the instantiation of the template with the
dictionary [6] (which is called “expanding”).

<html>
 <head>
 <title>My First Template</title>

</head>
 <body>
 This is an example of Auto escape
template,

Ch Rajesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4171-4173

www.ijcsit.com 4172

which depicts how to use template and
dictionary

 <img src=”./Mydirectory/mypic.jpg”
alt=”logo”>
 17-07-2015
 </body>
</html>

Here the markers {{TITLE}},{{BODY}},{{URL}} and
{{DATE}} have been replaced by their respective
dictionary values. Whereas, the marker {{META_DATA}}
doesn’t have an entry in the dictionary, so it is replaced by
an empty string. Even like the marker {{META_DATA}}
if any malicious code is injected it is also filtered in the
same fashion.

V.TYPES OF TEMPLATES:
There are six major types of markers, that are been used
mostly in template language [7]. They are as follows in
Table 1:

VI. CONCLUSION:
Whenever we wish to get rid of these XSS attach then we
need to deploy a strong template system on the client
machine. The template system filters all the malicious code
which is been injected from the third party website. But,
proper care is to be taken before using the template system,
because sometimes due to wrong template definition actual
content of the web page may be filtered out by our template
system. So, by following the above syntax rules template
definitions must be made with utmost care.

Table 1: Types of Templates

Marker Description

Variable Marker
The markers are replaced by the text defined by the value of respective dictionary. In
the example earlier, all are variable markers only. Ex:{{VAR_MRKR}}

Section Marker
There are Start Section and end section markers, which specifies a section in the
template. There may be 0, 1 or N section markers in the output. Section markers look
like {{#STRT_SEC}} ... {{/END_SEC}}

Template include marker

It delegate other template to be expanded and inserted instead of this marker,
wherever it appear. Template include can be thought of as a section marker, whose
content is specified in a file rather than inline. Just like sections it can appear -, 1 or N
times in the output. It look like {{>MARK_INCL}}

Comment Marker
Which may explain the template but it is removed completely from the o\utput once
after parsing. Its syntax is - {{! Your comment comes here ?}}

Set-delimiter Marker

The default delimiters for markers are double open curl braces ({{) and double close
curl braces (}}). If we wish to define our own custom delimiters for markers then we
can use set-delimiter marker. Ex: ||MRK-TAG||, assume here ‘|’ (pipe symbol is a
delimiter)

Pragma Marker
To invoke additional template features we use pragma. The only pragma defined in
the template system is AUTOESCAPE pragma.

REFERENCES:
[1] A Survey on Cross Site Scripting, Mr. Shailendra M. Pardeshi,

International Journal of Advance Foundation and Research in
Science & Engineering (IJAFRSE) Volume 1, Issue 5, October
2014. Impact Factor: 1.036, Science Central Value: 10.33

[2] Meixing Le and Angelos Stavrou ,” Double Guard: Detecting
Intrusions in Multitier Web Applications” IEEE Transactions On
Dependable And Secure Computing, Vol. 9, No. 4, July/August
2012, pp. 512-525

[3] M. James Stephen, P.V.G.D. Prasad Reddy, Ch. Demudu Naidu and
Ch. Rajesh,” Prevention of Cross Site Scripting with E-Guard
Algorithm” International Journal of Computer Applications (0975 –
8887) Volume 22– No.5, May 2011,pp. 30-34.

[4] https://www.netsparker.com/web-vulnerability-
scanner/vulnerabilitysecurity-checksindex/ crosssite-scripting-xss/

[5] Cross site scripting techniques and mitigation by CESG revision 1.0,
October 2007.

[6] S. Christey and R.A Martin. Vulnerability type distributions in cve,
version 1.1. [online],
http://cwe.mitreorg/documents/vuln-trends/index.html ,(09/11/07),
may 2007.

[7] A. Klien. Cross site scripting explained. White paper, sanctum
security group, http://crypto.stanford.edu/cs155/css.pdf, June 2002.

Ch Rajesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4171-4173

www.ijcsit.com 4173

